1. List the three important buffer systems in the body:
 a.
 b.
 c.

2. Write the equation showing the relationship of CO$_2$ and H$_2$O levels with bicarbonate and hydrogen ion levels:
 \[
 \text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \underline{} \leftrightarrow \underline{}
 \]

3. A decrease in respiration will result in _____ CO$_2$ and will shift the equation to the _______, resulting in an increase in ____ ions, making the plasma more ______.

4. When body pH is decreased, what are the three compensatory renal mechanisms to restore pH?
 a.
 b.
 c.

5. a. Normal arterial pH is _______ to ________.
 b. What is the pH in alkalosis? ________________
 c. What is the pH in acidosis? ________________

6. With ketoacidosis, show what happens to the following:
 a. _____ Plasma pH
 b. _____ (Left or right) shift of the carbonic acid/bicarbonate system
 c. _____ Bicarbonate levels
 d. _____ Respiratory rate
 e. _____ Renal excretion of H+

7. With metabolic alkalosis, show what happens to the following:
a. ______ Plasma pH

b. ______ (Left or right) shift

c. ______ Bicarbonate levels

d. ______ Respiratory rate

e. ______ Renal excretion of bicarbonate

8. With respiratory acidosis, show what happens to the following:

a. ______ Plasma pH

b. ______ (Left or right) shift

c. ______ Respiratory rate

d. ______ Renal excretion of bicarbonate

e. ______ Renal excretion of H+

9. With respiratory alkalosis, show what happens to the following:

a. ______ Plasma pH

b. ______ (Left or right) shift

c. ______ Respiratory rate

d. ______ Renal excretion of bicarbonate

e. ______ Renal excretion of H+